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Abstract. The implementation of the fuzzy predictive functional control (FPFC) on the magnetic
suspension system is presented in the paper. The magnetic suspension system was in our case the pilot
plant for magnetic bearing and is an open-loop unstable process, therefore a lead compensator was
used to stabilize it. The high quality control requirements were a-periodical step response and zero
steady-state error. Adding the integrator to a feedback causes overshoot. The solution to the problem
was cascade control with fuzzy predictive functional controller in the outer loop. To cope with the
unknown model parameters and the nonlinear nature of the magnetic system, a fuzzy identification
based on FNARX model was used. After successful validation the obtained fuzzy model was used for
controller design. The FPFC is compared with a cascade linear predictive functional control (PFC)
and PID control. The results we obtained with the FPFC are very promising and hardly comparable
with conventional control techniques.
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1. Introduction

Predictive control is the name for several different control methods such as: Gen-
eralized Predictive Control (GPC) (Clarke et al., 1987), Dynamics Matrix Con-
trol (DMC) (Cutler and Ramaker, 1980) and Predictive Functional Control (PFC)
(Richalet et al., 1978). The control law is based on the prediction, obtained with
the model of the controlled process. Control action is calculated in the way to
minimize the difference between the predicted process output and the reference
signal over a certain time horizon. Predictive controllers generally exhibit remark-
able robustness with the respect to the model mismatch and unmodelled dynamics
(Camacho and Bordons, 1995). Very good results were also achieved in combi-
nation with time delay processes (Camacho and Bordons, 1995). When based on
fuzzy model, predictive controllers proved to be very convenient for strongly non-
linear processes (Škrjanc and Matko, 2000, 2001).

In this paper, a method of predictive functional control is applied to a non-
linear process, namely a stabilized magnetic suspension. The researches, which
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have been made, are relating to the idea of the magnetic bearing. The high-quality
control requirements (short settling time with a-periodical step response and with-
out steady-state error) cannot be achieved using PID controller. For that reason
nonlinear Fuzzy PFC (FPFC) was applied. The real-time experiment of controlling
the stabilized magnetic suspension was made, to gain a deeper insight into process
behaviour. Due to insufficient knowledge of the process, the identification, based
on the FNARX model, has been made. The prediction was based on global linear
model (Škrjanc and Matko, 2000, 2001), written in the form of Takagi–Sugeno type
of the fuzzy model (Škrjanc and Matko, 2000; Takagi and Sugeno, 1985; Sugeno
et al., 1991). To calculate the H step-ahead output prediction of the third-order
model with complex poles in the transfer function, the model had to be written in
the state space domain (Škrjanc and Matko, 2001).

The paper is organized as follows: The magnetic suspension system is presented
in Section 2. Section 3 describes the concept of fuzzy identification. Predictive
functional control principles and design are given in Section 4 and the real-time
implementation of control algorithm together with the comparative analysis with
the linear PFC and PID control on the magnetic suspension system is presented in
Section 5.

2. Magnetic Suspension System

Magnetic suspension system (Manual for MA401 Magnetic Suspension System)
consists of an electromagnet, a coil and a distance sensor. Its basic principle is
shown in Figure 1, where uRL and i stand for voltage and current of the electro-
magnet respectively, R and L are resistance and inductance of the electromagnet,
c is unknown parameter, m is the mass of the coil and l is the distance between
the electromagnet and the coil. The goal is to control the distance l by the control
variable uRL.

Using the second Newton law, we can write

mg − Fm = m
d2l

dt2
. (1)

The magnetic force depends on the current i, the distance l and the parameter c.

Fm = c
i2

l2
. (2)

The electrical part of the system is modelled with the following equation

uRL(t) = L
di

dt
+ Ri. (3)

The sensor changes the distance to voltage. The function is linear with the offset.

yp = Ksensl + Usens, Ksens = −4 V/mm, Usens = 10 V. (4)
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Figure 1. Basic principle of magnetic suspension.

Between the controller (PC) and the electromagnet is interface (amplifier) with
the following function:

u = KactuRL + Uact, Kact = 2, Uact = −10 V. (5)

Combining Equations (1), (2) and (3) the nonlinear unstable differential equa-
tion is obtained

Lm

c

(
g − d2l

dt2

)
dl

dt
− Lm

2c
l
d3l

dt3
+ Rm

c
l

(
g − d2l

dt2

)
− uRL

√
m

c

(
g − d2l

dt2

)
= 0. (6)

In spite of our very poor knowledge about the magnetic system parameters, we
managed to stabilize it. The following lead compensator was used:

Gcc(s) = 4.5

(
s + 40

s + 400

)
, (7)

which can be in discrete domain at 2 ms sampling time expressed as:

Gcd(z
−1) = 4.5

(
1 − 0.9449z−1

1 − 0.4493z−1

)
. (8)

Also the feed-forward compensation of gravity of 2 V was applied.
Robustness of the lead compensator assures the stability in the whole operating

range. It is well known that the steady-state error cannot be eliminated by just using
the lead compensator, therefore an additional fuzzy predictive functional controller
was added in the cascade. To design the outer loop fuzzy predictive controller, the
fuzzy model of the inner loop had to be obtained. Due to the unknown values of
R,L, c and nonlinear nature of the observed process, a fuzzy identification was
used to obtain the process model.
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3. Fuzzy Identification

Fuzzy modelling became a very important area of research recently. Fuzzy mod-
els are, like artificial neural networks, universal approximators. Originally, fuzzy
model represents a static nonlinear function of input and output variables. The
dynamical behaviour is obtained with feeding in tap-delayed input variables and
feeding back tap-delayed output variables.

Generally, there are two types of fuzzy models: Takagi–Sugeno (TS) and Mam-
dani. TS model can be written as follows:

Rj : if x1 is A
j

1 and . . . and xN is A
j

N then y = f j (x1, . . . , xN), (9)

where xi are inputs, Aj

i are subsets of the input space, y is the output and f j is a
function, generally nonlinear.

Second type of fuzzy model is the Mamdani model:

Rj : if x1 is A
j

1 and . . . and xN is A
j

N then yis Bj , (10)

where Bj are consequent fuzzy sets.
The difference between the TS and the Mamdani type lies in the consequent site

of if–then rules. TS type anticipates the function for calculating the output, while
Mamdani type classify output as consequent fuzzy sets. The function consequent
part of TS model represents the linear model, so the rules are just for switching
among different linear models. Therefore, the TS type of model needs less rules
than Mamdani type for the same function.

In case of the magnetic suspension, a minor modification of the TS rule was
made. The antecedent variable was not the part of the regressor. As will be seen
from Section 5, the system can be satisfactory modelled as discrete third-order
model without zeroes. For this reason the derivation of the fuzzy identification and
the control law will be based on third-order model. The ith rule can be written:

Ri: if av is Ai then

ym(k + 1) = a1iym(k) + a2iym(k − 1) + a3iym(k − 2) + biu(k − D) + ri,
(11)

where ym(k + 1) is the output and ym(k), ym(k − 1), ym(k − 2), u(k − D) are the
inputs of the fuzzy model. D stands for the dead time expressed by the number of
samples, Ai are antecedent fuzzy sets and av is the antecedent variable, which will
be described later in the paper.

Using Fuzzy mean defuzzification method, the output is expressed by the fol-
lowing equation:

ym(k + 1) =
K∑
i=1

βi(k)(a1iym(k) + a2iym(k − 1) +

+ a3iym(k − 2) + biu(k − D) + ri). (12)

K stands for the number of rules and βi(k) is the normalized degree of fulfilment of
ith rule at kth step. The measured process output and input is the base for parameter



PREDICTIVE FUNCTIONAL CONTROL BASED ON FUZZY MODEL 471

estimation so the yp should be used instead of ym for the purpose of identification.
Equation (12) can be written with K equations as follows (Škrjanc and Matko,
2000):

β1(k)yp(k+1)=β1(k)a11yp(k)+β1(k)a21yp(k−1)+β1(k)a31yp(k−2)+β1(k)b1u(k−D)+β1(k)r1

...

βi(k)yp(k+1)=βi(k)a1iyp(k)+βi(k)a2iyp(k−1)+βi(k)a3iyp(k−2)+βi(k)biu(k−D)+βi(k)ri

...

βK(k)yp(k+1)=βK(k)a1Kyp(k)+βK(k)a2Kyp(k−1)+βK(k)a3Kyp(k−2)+βK(k)bKu(k−D)+βK(k)rK.

(13)

To determine parameters a1i , a2i , a3i , bi and ri of the ith rule, the regression
matrix �i and the output data vector Yi

p should be obtained as presented in the
following equations

ψi(k) = [
βi(k)yp(k) βi(k)yp(k − 1) βi(k)yp(k − 2) βi(k)u(k − D) βi(k)1

]
,

(14)

�i =




ψi(D)
...

ψi(k)
...

ψi(N − 1)


 , (15)

Yi
p =




βi(D)yp(D + 1)
...

βi(k)yp(k + 1)
...

βi(N − 1)yp(N)


 . (16)

The vector of parameters of ith rule θi is obtained by using the least squares
method

θi = (�T
i �i )

−1�T
i Yi

p, (17)

where the elements of θi are a1i , a2i , a3i , bi and ri .

θT
i = [

a1i a2i a3i bi ri
]
. (18)

The steps from Equations (14), (15), (16) and (17) should be repeated for all
rules. Vectors θi can be joined to a matrix

� = [
θ1 θ2 · · · θK

]
, (19)

where ith column represents the parameter vector of ith rule. The fuzzy model of
Equation (12) can be written in the following form also called global linear model

ym(k + 1) = ã1(k)ym(k) + ã2(k)ym(k − 1) + ã3(k)ym(k − 2) +
+ b̃(k)u(k − D) + r̃(k), (20)
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where the parameters are

ã1(k) =
K∑
i=1

βi(k)�1i,

ã2(k) =
K∑
i=1

βi(k)�2i,

ã3(k) =
K∑
i=1

βi(k)�3i, (21)

b̃(k) =
K∑
i=1

βi(k)�4i,

r̃(k) =
K∑
i=1

βi(k)�5i.

4. Fuzzy Predictive Functional Control

The basic idea of model based predictive control is to predict the future behaviour
of the process over a certain horizon using the dynamic model and obtaining the
control actions to minimize a certain criterion, generally

J (u, k) =
N2∑

j=N1

(ym(k + j) − yr (k + j))2 + λ

Nu∑
j=1

u2(k + j). (22)

Signals ym(k + j), yr(k + j), u(k + j) are j -step ahead predictions of the
process model output, the reference trajectory and the control signal respectively.
Parameter λ is the weight of the control signal energy. N1, N2 and Nu are minimum,
maximum and control horizon respectively.

Predictive functional control (PFC) is one of MBPC method. The criterion of
Equation (22) is not minimized using the time-consuming minimisation functions,
but is implied in the control law, so PFC is a very appropriate method for short
sampling time processes. In combination with fuzzy model is called Fuzzy PFC
(FPFC).

The predictive functional controller is designed in the time domain. For the
purpose of H step-ahead prediction, the model from Equation (20) should be trans-
formed into a more compact form, for example in the state space domain

xm(k + 1) = Ãmxm(k) + B̃mu(k) + R̃m, (23)

ym(k) = C̃mxm(k). (24)
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If the state vector xm(k) is

xm(k) =

 ym(k)

ym(k − 1)
ym(k − 2)


 , (25)

then matrices Ãm, B̃m, R̃m and C̃m, become

Ãm =

 ã1 ã2 ã3

1 0 0
0 1 0


 , (26)

B̃m =

 b̃

0
0


 , (27)

R̃m =

 r̃

0
0


 , (28)

C̃m = [
1 0 0

]
. (29)

Presuming

u(k) = u(k + 1) = · · · = u(k + H − 1), (30)

the H step-ahead prediction can be written

ym(k + H) = C̃m

(
ÃH

mxm(k) + (ÃH−1
m + · · · + Ãm + I)(B̃mu(k) + R̃m)

)
. (31)

The sum of powered Ãm matrices can be simplified as

ÃH−1
m + · · · + Ãm + I = (ÃH

m − I)(Ãm − I)−1. (32)

The closed-loop response should be similar to the reference trajectory, which is
the output of the reference model.

xr (k + 1) = Arxr (k) + Brw(k), (33)

yr(k) = Crxr (k). (34)

Matrices Ar , Br and Cr have to be chosen to fulfil the equation.

Cr (I − Ar )
−1Br = 1. (35)

In the same manner, as with the process model, the H step-ahead prediction of
the reference model can be written as

yr(k + H) = Cr

(
AH

r xr (k) + (AH
r − I)(Ar − I)−1Brw(k)

)
. (36)

The main goal of FPFC is to equalize the process objective increment (p and
the model objective increment (m at a certain horizon H . The control action is
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then calculated from required model increment. The process objective increment is
the difference between H -step ahead predicted reference trajectory and the present
process output

(p = yr(k + H) − yp(k), (37)

(p = Cr

(
AH

r xr (k) + (AH
r − I)(Ar − I)−1Brw(k)

) − yp(k). (38)

The model output increment is defined as

(m = ym(k + H) − ym(k), (39)

(m = C̃m

(
ÃH

mxm(k) + (ÃH
m − I)(Ãm − I)−1(B̃mu(k) + R̃m)

) − ym(k). (40)

As mentioned above the control action is obtained by equalizing

(p = (m. (41)

The control law can be explicitly expressed by deriving the control variable u(k).

u(k) = CrAH
r xr (k)+Cr (AH

r −I)(Ar−I)−1Brw(k)−yp(k)−C̃mÃH
m xm(k)−C̃m(ÃH

m−I)(Ãm−I)−1R̃m+ym(k)

C̃m(ÃH
m−I)(Ãm−I)−1B̃m

.

(42)

The minimisation criterion of Equation (22) is on first look not implied in the
proposed control law, but some way it is. Control action is calculated in the way
to minimize the difference between reference model output and process model
output. That can be seen from Equations (37), (39) and (41). The “saving energy”
part can be considered as presumption of Equation (30). The prediction horizon H

has an analogy with the parameter λ. Large H gives more time to the controller,
what results in more smooth time diagram of control variable and small H makes
controller more nervous. Changing the parameter λ results in the same way.

5. Real-Time Experiment

The theory of FPFC has been applied to the magnetic suspension previously sta-
bilized with the lead compensator. The electrical part of the system from Equa-
tion (3) has very fast dynamics so the poles from Equation (1) are dominant. We
can presume that the magnetic suspension is originally a second order system.
The compensator adds another pole into the closed-loop system, which results in
the closed-loop structure of the third order. Nevertheless, the structure of fuzzy
model was established with experimenting on the identification data. The best
identification result was achieved the structure was following.

TS model has antecedent fuzzy sets A1 and A2. Membership functions of an-
tecedent fuzzy sets are shown in Figure 2. They have been chosen in accordance
with different process dynamics when process output is increasing or decreasing.
For the antecedent variable filtered derivative was chosen in the form y(k)− y(k −
10). Different dynamics can be seen from series of step response shown in Figure 3.
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Figure 2. Antecedent fuzzy sets.

Figure 3. Validation of the model.
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Experiments with the identification data sampled on the magnetic suspension
device confirmed that the third order submodels without discrete zeroes are suffi-
cient to describe the process. The identified TS model with the sampling time of
2 ms is

R1: if y(k) − y(k − 10) is A1 then
y(k + 1) = 1.3449y(k) + 0.2288y(k − 1) − 0.5822y(k − 2)+

+ 0.0188u(k − 2) + 0.0199,

R2: if y(k) − y(k − 10) is A2 then
y(k + 1) = 1.3174y(k) + 0.1495y(k − 1) − 0.4755y(k − 2)+

+ 0.0189u(k − 2) + 0.0219.

(43)

A tight fit of the simulated output (dashed) to the real response (solid) is shown
in Figure 3.

Tuning the FPFC in the phase when the process model is obtained means choos-
ing the reference model and the prediction horizon. With the reference model, the
time constant of closed loop system is determined. The third-order reference model
was chosen with the respect to the model dynamics. The reference model should
not be to fast if we want to avoid the oscillations, but should be fast enough to fulfil
the control requirements. Three discrete poles of the reference model were placed
on the same position:

p1 = p2 = p3 = 0.94. (44)

The prediction horizon is normally chosen to fulfil the term

N � H � Tr

2Ts

, (45)

where N is the process order, Tr is the time constant of reference model and Ts

is the sampling time. In our case prediction horizon was chosen as H = 12.
Smaller prediction horizon on one hand results in better accuracy of the predicted
process output, but on the other hand, the FPFC strongly amplifies the noise of the
measured process output.

Time-consuming calculating of u(k) can be a problem in the case of very fast
process dynamics. In each sample time the computer is dealing with different ma-
trices Ãm, B̃m, R̃m and C̃m. The problem was solved in the following way: For both
consequent linear models of Equation (43) linear PFC-s were designed. Matrices
Ãm, B̃m, R̃m and C̃m are composed from both consequent linear models. Since
the multiplication factors of all signals of control law presented in Equation (42)
are constant, can be computed in advance and represent two linear PFC-s. Linear
combination was made using the membership degrees β1 and β2. The complex
matrix computations were transformed to a simple equation

u(k) = β1u1(k) + β2u2(k), (46)

where u1(k) and u2(k) stand for output of both linear PFC.
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Figure 4. Response using FPFC.

In Figure 4 the real-time response of the process (solid) and the reference tra-
jectory (dashed) are shown. The detail is presented in Figure 5.

5.1. COMPARISON OF FPFC WITH PID AND PFC

Finally, the comparison with a PID control and a linear PFC was made. The Smith-
predictor was applied in the PID controller case, to assure equal conditions for
all controllers considering the dead-time. The PID controller was modified so the
differential input was connected direct to the process output. The structure of the
PID controller can be seen from the equation

U(z−1) = KpE(z−1) + KiTs

1

1 − z−1
E(z−1) + Kd

Ts

(1 − z−1)Yp(z
−1). (47)

The parameters of the PID controller were obtained with optimisation using
the ITAE criterion. The goal was good response to the positive step from −3 to
3 V. Resulted parameters were Kp = 0.185, Ki = 3.70 and Kd = 0.005, and the
sampling time was Ts = 2 ms.

The PFC design was based on the linear model of the process obtained from
the fuzzy model. The linear model parameters are mean values of both consequent
linear models of the TS model. Obtaining the linear model can be also explained,
as setting the antecedent variable av = yp(k) − yp(k − 10) to zero. That gives us
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Figure 5. Detail of Figure 4.

the linear model, which step response is something between step responses of both
consequent models. The linear model is

yp(k + 1) = 1.3312y(k) + 0.1891y(k − 1) − 0.5289y(k − 2) +
+ 0.0188u(k − 2) + 0.0209. (48)

The PFC design is similar to the FPFC design described in Equation (23) to Equa-
tion (42), but based on linear model.

Comparison of the control techniques in real-time on the pilot plant can be seen
from Figure 6 and detailed look is best shown in Figure 7. The FPFC response is
plotted with the dash-dot, the linear PFC response with the dashed and the PID
response with the solid line.

Combining all three responses together, the following can be said: When com-
paring the PID control and the linear PFC, the difference lies in the modern pre-
diction law, and when comparing the PFC with the FPFC, the difference is in the
nonlinear structure of the FPFC. The difference between the PID and the FPFC is
as well in the modern prediction law as in the nonlinear structure.

The responses using the FPFC and the PFC are not very different. The difference
between both controllers is in the case of fast decreasing of the process output.
Considering the nonlinearity as the linear model parameters mismatch, this can be
another proof of the robustness of the predictive functional control.
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Figure 6. Comparison of step responses using different controllers.

Figure 7. Detail of Figure 6.
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Comparing with the PID control, the FPFC is better in all cases. The settling
time on positive changes of reference using the PID control is twice longer, than us-
ing the FPFC. Another drawback of the PID control was appearance of oscillations
in the lower part of the operating range.

6. Conclusion

The nonlinear prediction control law is presented in the paper. The theory of FPFC
is implemented to the nonlinear process with very fast dynamics. As seen from the
comparison with conventional PID control, the FPFC exhibits very good perfor-
mance. The nonlinear structure of the FPFC offers some extra advantage, which
can be seen from the comparisons with the linear PFC. Its great robustness in the
presence of model inaccuracies and unmodeled dynamics certified with real-time
experiment makes FPFC convenient for a great number of applications. Regarding
to the idea of magnetic bearing, the FPFC promises high-quality control.
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